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ABSTRACT

In this research a Collaborative Optimization (CO) approach

for multidisciplinary systems design is used to develop a

decision based design framework for non-deterministic

optimization. To date CO strategies have been devcloped for use

in application to deterministic systems design problems. In this

research the decision based design (DBD) framework proposed

by Hazelrigg (1996a, 1998) is modified for use in a

collaborative optimization framework. The Hazelrigg

framework as originally proposed provides a single level

optimization strategy that combines engineering decisions with

business decisions in a single level optimization. By

transforming this framework for use in collaborative

optimization one can decompose the business and engineering

decision making processes. In the new multilevel framework of

Decision Based Collaborative Optimization (DBCO) the

business decisions are made at the system level. These business

decisions result m a set of el_gineering performance targets that

disciplinary engineering design teams seek to satisfy as part of

subspace optimizations. The Decision Based Collaborative

Optimization framework more accurately models the existing

relationship between business and engineering in

muttidisciplmary systems design.
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fixed cost

total cost

unit cost

variable cost

expected value

objective function in optimization problem

net revenue

price

present va[ue of net revenue

vector of attributes

demand coefficient for attribute i

demand coefficient for price

vector of compatibility (or discrepancy ) constraints

compatibility constraint in discipline i

vector of constraints

vector of constraints in discipline i

number of cost-related variables

number of attributes
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number of subspaccs (disciplines)

vector of parameters

variable cost parameter associated with cost-related

variable i

demand

baseline demand

utility

vector of design variables

vector of auxiliary design variables

vector of auxiliary design variables corresponding to

Yu

x i vector

Xsh vector

(X_h)i vector

Xs_ ' vector

(x._,) i vector

xs_ s vector
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of local design variables for discipline i

of shared design variables

of shared design variables used in discipline i

of subspace design variables in discipline i

of optimal target values in discipline i

of system level design variables

vector of targets (i.e., system level design variables)

sent down to discipline i

vector of state variables

vector of state variables calculated as output from

discipline i

vector of coupling variables calculated as output from

discipline i and used as input to disciplinej

system level target variable

variablc at the optmmm design

INTRODUCTION

Increasing attention has been paid to lhe notion that

engineering design is a decision-making process (Chen, et.

a1,1998, 2000, Kiln, et. al, 2000, Azann, 2000). This notion is

consistent with the definition of decision as a choice from

among a set of options and as an irrevocable allocation of

resources. The approach of decision-based design (DBD) is

built upon this notion. Rooted from more than two hundred

years of research in the field of decision science, economics,

operations research and other disciplines, decision-based design

(DBD) provides a rigorous foundation for design, which enables

engineers to identify the best trade-off and focus on where the

payoffs are greatest.

Engineering design involves the generation of design

alternatives or options and the selection of the best one. Since

the number of possible design options is practically infinite for

most products, human judgement is needed to decide which

options to include in the consideration of alternative designs and

which to neglect. Moreover an appropriate value measure has to

be determined in order to compare and rank order design

,_ptions. It is impossible to know exactly how a particular design

alternative will perform before it is built. However the product

cannot be built until it is selected. Evidently engineers have to

make their selection a priori, without full knowledge of the

consequence of this certain selection. Thus design is always a

_nattcr of normative decision making under uncertainty and risk.

Optimization techniques have been widely applied to select

"he prefcrred design options from the set of alternatives taken

_ato consideration without having to explicitly evaluate all

i_ossiblc alternatives in the set. There exists a close relationship

between decision making and optimization. In general, decision

making has three elements: generation or identification of

<,ptions, assignment of expectations on each option and the

;_pplication of preferences to detemfine the preferred choice. An

,.,ptimization problem involves the maximization or

minimization of an objective function or functional F(x) in the

:easible region of design variables x. A careful comparison

between decision making and optimization will reveal that

options, expectations and preferences are all present in

optimization. The option space is equivalent to the set of

c_ermissible values of x in the feasible region. The expectation

of any given x is assigned by F(x), and the preference is stated

-hat more is better (maximization) or less is better

minimization). Thus optimization can be used to capture the

properties of decision-making. This recognition allows the

.tpplication of rigorous decision theory to the case of

._ptimization.

DECISION-BASED DESIGN (DBD) FRAMEWORK

Application of decision-based design within an optimization

domain, requires practitioners to formulate valid objective

functions for proper decision-making. Most of the research in

the field of optimization has been focused on the solution of the

optimization problem such as development, improvement and

mlplcmentation of search methods to locate the optimum, v, hilc

little attention has been paid to optimization problem

formulation. In fact, the issue of problem fotnnulation is of the

_;amc significance, if not more, as the issue of finding the

optimal solution. An solution obtained using any search method

is no better than the objective function chosen for the

optimization. If an irrelevant objective is used, the solution is

equally irrelevant (Hazelrigg 1996a, 1997). Therctbrc a primary

concern in DBD is the development a mathematically sound

objective function. Recognizing that design is a decision-

making process, it is imperative to construct an objective

function which is able to capture the preferences of rational

decision makers in system design problems involving risk. The

decision-based design (DBD) framework of Hazelrigg 1996a,

1998 (Fig. 1) provides a basis for exploring this issue.



The Rule of Rational Decisions

The aforementioned decision-based design framework

implements the concept of rational decisions. Rational decisions
follow the rule that the preferred decision is the option whose

expectation has the highest value. In a nomlative approach,
decisions involve options, expectations and values. An

expectation combines the possible outcomes of an alternative

with probabilities of occurrence of each possible outcome. Note

that in general expectations are not equivalent to outcomes. An

outcome refers to what actually happens after a decision is made

to select a certain option, while an expectation refers to what is

expected to happen, based on available knowledge, as the result
of a decision before the decision is made. In other words

expectations are associated with what will happen, therefore,

expectations relate to the future. In the process of engineering

design, it is practically impossible to predict the future with

precision and certainty. The outcomes of most options in the

design option space cannot be determined with certainty prior to

the decision to select one option. Hence expectations are always

probabilistic. Engineers are forced to make decisions under

uncertainty and risk.

Unlike problem-solving, decision-making cannot be

conducted in the absence of human values. The purpose of

values in decision making is to rank order alternatives according

to the preference of decision makers. In the case of

optimization, engineers seek a design which maximizes value,
and the objective function serves as a numerical value function

to automate the process of rank ordering. By means of an

objective function, a real scalar is assigned to each design
alternative in accordance with the decision maker's preference.

In this sense an objective function serves as a utility function in

the context of economics. Note that utilities are determined by

preferences and so is the objective function. A necessary

condition for the existence of an objective function in decision-

based design is that decision makers or design engineers arc

rational individuals whose preferences and indifferences

between all pairs of outcomes in the design space exists and
comprises a transitive set.

Decision Making/Optimization Under Uncertainty

Due to the nature of engineering design, expectations on
design alternatives can never be determined with certainty.
Particular care should be taken m the formulation of an

_)bjective function when risk is present. It is imperative that the

objective function (or utility function in the context of

,economics) must be valid under conditions of uncertainty and

risk. The yon Neumann-Morgenstem (vN-M) utility is such a

..alue measure. Built upon the notion of von Neumann-

Morgenstern lottery and six rigorous axioms (von Neumann,

953), the normative framework for decision making under risk

_eads to a simple but profound result -- the so-called expected

_tility theorem: "The utility of a lottery is the sum of the utilities

,_f all possible outcomes of the lottery weighted by their

probabilities of occurrence." It follows that the preferred choice

:Tom anaong a set of risky options is the option with the highest

expected utility. In the case of optimization, the axioms of vN-

M utility should be adhered to and the objective function should

entail the assignment of a vN-M utility to each design
;Jternative under consideration.

Characteristics of DBD Framework

The normative framework of decision-based design

_mplements the concept of rational decisions. It facilitates vN-M

utility as a measure of value against which design alternatives

can be compared and optimal designs sought.
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Figure 1. Decision-Based Design Framework (Hazelrigg, 1996b)



The DBD framework may view the objective of systems

design as one of maximizing profit. Profit, which is also referred

to as net revenue (NR), is revenue generated by the product less

all costs generated by the product. Revenue is the sum of

products sold times their prices, in other words, it can be

calculated as the product of the demand q and the price P at

which the product is sold. Costs are the sum of things bought

multiplied by their prices. Total cost C T consists of: cost of

manufacture, and all other life cycle costs such as costs of

research, design, maintenance and repair and much more. The

calculation of net revenue (NR) can be summarized as Eq. (1):

NR P.q-C r (])

To account for the time value of money since revenues and

costs are spread over periods of time, a better index for profit

would be the present value of net revenue (PAIR) which can be

obtained from properly discounting net revenue (NR) to the

present and integrating it over time.

Recognizing most products are designed to make money, a

valid objective function for optimization or decision making

under uncertainty and risk can be established according to the

rule of rational decisions: in the process of decision-based

design, the optimizer should seek to maximize the expected vN-

M utility of the profit., or net revenue (NR).

The axioms of vN-M utility dictates that utilities are not

arbitrarily selected. Rather, utilities must provide proper rank

ordering of design alternatives ill the case of vN-M lottery. In

non-detemainistic optimization where uncertainty and risk

cannot be neglected, the decision maker's risk preference

towards money must be taken into consideration. Ill general, the

risk preference of the decision maker towards money leads to a

utility of money that has diminishing marginal value (Bernoulli,

1738). Thus profit or tact revenue (NR) itself is not a valid utility
under such circumstances.

MULTIDISCIPLINARY ENTERPRISE MODEL

Design is inherently a multidisciplinary process. Traditionally

multidisciplinarl' design has focused on disciplines within the

field of engineering analysis, such as aerodynamics, solid
mechanics, kinematics, control, and mauy others. In the

approach of decision-based design, engineers arc compelled to

look at the design from a broadcr viewpoint. Indeed, decision-

based design encompasses not only the engineering disciplines
but also business disciplines including economics, marketing,

operation research and more. In addition to aiming at improving

the performance of a design, engineers must be aware of the
substantial impact of non-engineering disciplines on the goal of

design. Effective communications between engineers and

experts in the business field are vital to produce successful

designs.

The DBD framework of Hazelrigg (1996, 1998) combines

both engineering and business performance simulations in a

_ingle level all-at-once optimization approach. In the current

research the Hazelrigg framework (Fig. l) has been

decomposed into the multidisciplinary enterprise model shown

m Fig. 2. The decomposed system consists of two major

elements: the engineering disciplines and the business

discipline. The work in engineering disciplines focuses on

_redicting the performance of the product for different design

configurations, as well as satisfying performance targets set in

the business discipline (i.e., management). The role of the

business discipline centers on providing targets for perfomlance

mlprovements in order to yield higher profit. These two

organizations are coupled through attributes a, total cost C T and

demand q.

Attributes a refer to the performances of a product. These

performances directly influence customer demand. Examples of

attributes include speed, acceleration, comfort, quality,

reliability, safety, etc. Prediction of attributes a can be obtained

from the engineering disciplines. Such information will be used

as input into the business discipline to estimate the demand q for

the product, which will then be used to determine the profit or

net revenue. In order to compute profit, an estimate of the total

cost C T is required. C T is again computed in the engineering

disciplines. Since total cost is influenced by the number of
product manufactured and/or sold, estimation of demand q is

called for to feed back into the engineering disciplines. In this

research it is assumed that the demand for the product, the

amount of the product manufactured and the amount of the

product sold are equal.

The prediction of product attributes a and total cost C T is

conducted in the engineering disciplines. The engineering

disciplines module is partitioned into a module of product

perfomlance and a module of manufacturing cost and life cycle
costs. The set of variables which uniquely detines a specific

design are referred to as engineering design variables x.

Engineers usually have control over these variables. Tile

estimation of demand q, net revenue NR and, ultimately, the

expected utility of net revenue, are managed in the business

discipline. The price of the product not only directly affects the

:nnount of profit or net revenue (see Eq. I), it is also an

important factor driving the demand q, which is also affected by

the product attributes a. Mathematically speaking, q can be
modeled as a function of attributes a and the price, P.

q - zc(a, P) (2)

Note that price is free to be chosen by the decision maker,

therefore it should be treated as a design variable.

In the context of multidisciplinary design, the term "system
analysis (SA)" is often used to describe the process of

predicting the perfon-nance of an engineering artifact using



numerical simulation, which is part of the multidisciplinary

enterprise model investigated in this research. Ill fact,

simulation based design tools can be used to assist in tile

analyses within tile entire multidisciplinary system. Under these

circumstances, the analysis of the enterprise model is no

different than a "system analysis," only of a larger scale. The

research results of multidiscip[inary design call be readily

applied to the multidisciplinary enterprise model. Note that the

equations of physical laws involved in the system analysis are

sometimes referred to as "constraints" in the field of decision

science.

The performance predictions obtained from a system analysis

(SA) are referred to as states y in the context of

multidisciplinary design. If we think of the multidisciplinary

enterprise model (Fig. 2) as one big SA, then the attributes a,

total cost Cv demand q and net revenue NR are components of

the system states. In this paper states y are used to represent the

engineering performance predictions, calculated in the product

performance module of the multidisciplinary enterprise model.

Therefore, not all of the states y are attributes a. Only those

states which influence product demand q will be included in the

set of attributes a. In decision-based collaborative optimization

framework (DBCO), tile system level optimization treats

attributes a as system level design variables Xsy s which influence

demand q and serve as targets for the discipline designers to

satisfy.

Note that variability exists in the engineering design variables

_: and all simulation-based design tools employed ill each

: liscipline have prediction errors associated with them.

SYSTEM OPTIMIZATION

The multidisciplinary enterprise model discussed above

:_elongs to the type of so-called non-hierarchic systems (or

,:oupled/networked systems). Such systems, usually of fairly

arge scale, are characterized by large numbers of design

,'ariables x and parameters p, large numbers of requirements or

constraints g, and a high level of coupling between participating

disciplines which are intrinsically linked to one another.

Coupling results from the information exchange that are

:equired within the system analysis. This occurs where the

output of one discipline is required as input to another discipline

and vice versa. Some of the mathematical terms, defined by

_alling and Sobieszczanski-Sobieski (1994), are briefly

:eviewed below and will be used hereinafter.

In a coupled system the design variables x can be

:lecomposed into the set of shared variables Xsh and nss sets of

!ocal variables xi, where i ranges from 1 to nss, and nss is the

',otal number of subspaces (or disciplines). The set of shared

variables Xs/_ contains design variables that are needed by more

lhan one discipline. The set of local variables x i includes design

variables associated with discipline i only. The set Of Xsh and the

;ets of x i are mutually exclusive subsets of the set of design
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variables x. The term (Xsh)i is used to represent the shared

design variables that are needed in discipline i.

The set of output from discipline i is denoted by Yi. The set of

system states y is composed of all the yi's in the nss disciplines.

The term y,j is introduced to represent the output from discipline

i which is also used as input in another disciplinej. Note that Yij

are the subset of coupling variables in the set ofy i.

The vector gi contains the design constraints associated with

discipline i. it is assumed that no constraint will stretch over
more than one discipline. It is also assmned that each inequality

constraint has been formulated such that zero is the permissible

value, and the constraint is satisfied when it is greater than or

equal to zero. In conventional design optimization, constraints
can be formulated to guard against system failure or to restrict

the design search to preferred regions of the design space. This

second class of constraint, related to design preference is not

used in the decision-based collaborative optimization

framework developed in this research. In this research preferred

regions of the design space are imposed implicitly through the
demand function.

Collaborative Optimization (CO)

The Collaborative Optimization (CO) strategy was first

proposed by Kroo, et al. (1994) and Balling and

Sobieszczanski-Sobieski (1994). The CO strategy has been

successfully applied to a number of different design problmns

including the design of a single-stage-to-orbit launch vehicle

(Braun, et. al, 1996b). Tappeta and Rcnaud (1997) extended this

approach and developed three different formulations to provide

for multiobjective optimization of non-hierarchic systems.

Collaborative Optimization (CO) is a two level optimization

method specifically created for large-scale distributed-analysis

applications. The basic architecture of collaborative
optimization (Braun, ct. al, 1996a) is shown in Fig. 3. The CO
framework facilitates concurrent design at the discipline design

level. To achieve the concurrency in the subspace level,

auxiliary design variables (Xaux)O. are introduced as additional

design variables to replace the coupling variables YO so that the

analyses in disciplines i and j can be executed concurrently.

Compatibility constraints (or discrepancy functions) d are added

to ensure consistency such that (xaux)o-=yij. Compatibility

constraints are usually in the form of equality constraints.

The system level optimizer attempts to minimize a system
level objective function F while satisfying all the compatibility

constraints d. System level design variables Xsys consist of not

only the shared variables Xsh but also the auxiliary xa, x

variables. These variables are specified by the systcm level

optimizer and arc sent do,,vn to subspaces as targets to be

matched. Each subspace, as a local optimizer, operates on its

own set of design variables Xss i with the goal of matching target
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Figure 3. Basic Collaborative Optimization

Architecture (Braun et. al, 1996a)

values posed by the system level as well as satisfying local

constraints gi. The matching can be attained by minimizing the

discrepancy d i between some of the local design variables and/

:_r local states and their corresponding target values, in other

words, the objective functions at subspace level are identical to

the system level (compatibility) constraints. This formulation

allows the use of post-optimal sensitivities calculated at the

subspace optimum to be used as the gradients of the system
level constraints. This important feature improves the overall

efficiency of CO by eliminating the need to execute subspace

analysis for the sole purpose of calculating system constraint

;:;radients by finite differencing.

DECISON-BASED COLLABORATIVE OPTIMIZATION

Decision-Based CO (DBCO) Framework

In the decision-based collaborative optimization (DBCO)

framework developed in this research, the multidisciplinary

enterprise model (Fig. 2) is decomposed along analysis
boundaries into several subsystems. The method of

collaborative optimization (CO) is used to determine the

optimal design of this complicated model, where an optimizer is

integrated within each subsystem or discipline. The resulting
decision-based collaborative optimization (DBCO) framework

rigorously simulates the existing relationship between business

and engineering m multidisciplinary systems design as shown in

Fig. 4. A brief discussion about this framework is given below.

System Level Optimization

In the decision-based collaborative optimization framework,

Ihe business decisions are made at the system level. As

discussed before, the goal of decision-based design optimization

is to maximize the expected utility of net revenue (E(u(NR))) of

the engineering artifact being designed. The system level

optimizer in the decision-based collaborative optimization
framework attempts to increase expected utility of net revenue

while satisfying compatibility constraints d. According to the



analysesin the businessdisciplineand the subspace
optimizationresults,the systemleveloptimizerdetenmnes
priceP and establishes a set of performance targets for shared

design variables Xsh and auxiliary design variables x,_L_.,

including demand q and total cost C7=Attributes a are treated as

auxiliary design variables which influence demand. Note that

demand q and total cost C T arc also anaong the auxiliary

variables. Also note that since the design variable price P is only

needed in the business discipline, it is not a target for any

subspace.

The business discipline is operated on directly by the system

level optimizer. It is not further decomposed into demand and

utility of profit subspaces. The reasons why the business

discipline is dealt with in this manner are as follows: First of all,

there is no two-way coupling between the analysis in the

demand subspace and the utility of profit subspace. The demand

q is fed forward into the Profit subspace. Secondly, the analyses
involved in this discipline are relatively simple and

straightforward (Eqs. (1) and (2)). Consequently it is relatively

easy to obtain sensitivity infomlation with respect to the profit
(or net revenue) or the utility of net revenue. In the cases where

an analytical demand model and an analytical utility model are

supplied, the sensitivity information is readily acquired through

the application of the chain rule.

The system level optimization problem in its standard form is

given in Eq. (3).

Minimize: F = -E(u(NR))o

w.r.t. Xsys

Subject to: d7 = 0 i = 1.2 ..... n_s

O O O

(xs,,_) .... _<x._:.,.<_(xs_:),,,, _
0 0 0

Xsy s = (Xsh, Xaux)

P > 0 (3)

Note that maximizing the expected utility E(u(NR)) is

equivalent to minimizing its negative value. Note also that net

revenue (NR) is determined by the system level design variable

Xsys and price P. Since system design variables Xsys are posed as
o

targets to the subspaces, the term x_y,_ is used in Eq. (3) so that

:hey can be distinguished from subspace design variables in the

_ubproblem formulations. The term d_ refers to the optimal

value of the discrepancy function d i obtained by the

_ubproblcms. The formulation of d i is discussed in the next

:_ection.

::;ubspacc Level Optimization

The subspace optimizer seeks to satisfy the targets sent down

!:_ythe system level optimizer and reports the discrepancy d_

ilack to the system level. Meanwhile the subspace optimizers

_re subject to local design constraints gi. In the field of
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Figure 4. Decision-Based Collaborative Optimization



engineering design, the design constraints normally guard

against failure or restrict the search to preferred region of the

design spacc. One cxamplc of failure-related constraints is to

require that "the axial load in a beam not exceed its buckling
load". The statement that "tile mass of the beam should be less

than 7 kg" is an example of constraints based on preference. The
use of constraints to restrict the search to preferred region of

design space is not recommended in decision-based design

approach. Firstly, to impose a preferred space, the engineer must

decide and quantify what level of behavior is unacceptable or
undesirable (i.e., not preferable). This is a matter of decision-

making and by imposing constraints of preferences, the designer

is removing some degrees of freedom in the design process. The

resulting system optimization may fail to identify the design
with the best trade-off, especially when this constraint is activc

or near active at the optimal solution. In the example of the

beam, a beam of mass greater than 7 kg is said to be

unacceptable. But it is possible that a beam of 7.1 kg can

support a much higher load than a beam of 7kg. If the goal of
the optimization is to find a light beam that can support a large

load, the beam of 7.1kg might be a better design. Yet if a

constraint is set to ensure the mass of the beam to be no greater

than 7 kg, the optimizer will not locate the beam of 7.1kg, even

though it may be more prefcrrcd.

Upon closer examination, undesirable behaviors (i.e., non-

preferred region) are often undesirable because such behaviors
lead to a decrease in the demand of the product and/or an

increase in the cost ofthc product, which in the end, results in a

decrease of profit. In DBD the market place is used to determine

preferred region of the design space through demand and cost
models, and therefore constraints related to undesirability or

preference are eliminated. Therefore the local constraints in the
decision-based collaborative optimization (DBCO) framcwork

tend to be those constraints that guard against system failure.

Other traditional engincenng constraints related to consumer

preference are eliminated from tile subspace optimization anti

are instead incorporated ira the demand model and/or cost
model.

The subspace optimization problem for discipline I of Fig. 4

in its standard form is given below:

Minimize: o 2
w.r.t, xs._l d I = ((x_h)l-(x,.j,) I)

tl_¢ 0 2

+ Y ((x ..... )sl (x ......)jt)
I

o 2

+ Z (Yj_.-(xo_,)ID
k 2

Subject to: gl ->0

(x l),,,i, <-x,,i <-(x,.,q) ......

x,,l = ((x h) I,(x ......)jt,xl)
(4)

l'he subspace must satisfy local constraints gi while attempting

to minimize discrepancies in system level targets. Note that

_ttribute targets are imposed in the second and the third terms of

_he discrepancy function.

System Level Constraints Gradient

The gradient of system level constraints plays an important

_olc in forming search directions for the system Icvcl

,)ptimization. As mentioned earlier, one important feature of CO

_s that post-optimality sensitivity analysis from the converged

mbspace optimization problem can be used to provide system

level derivatives for compatibility constraints (Kroo et. al,
i994). As a result, both computational expcnse and numerical

error are reduced. This is possible because the system level

design variables are treated as parameters (i.e., targets) in the

:-_ubproblems. Note that for a certain discipline i, depending on

the contributing analysis involved, not all the system level

design variables xsrs are necessarily posed as targets to be

matched. It is possible that only a subset of Xsy.,, referred to as

;xsy.O_, is sent down as subspace i targets. Generally all the

_;ubsets for nss subspaces are not mutually exclusive, i.e., their

intersections exist. The set of system level design variables x_v_

_s the union of all the subsets (x,.,) . The gradient of system

ievel constraint d7 with respect to the subset (x.,,,s) ' of the

,;ystem level design variables sent down as targets to discipline i

_sgiven below in Eq. (5). The gradient of system level constraint

with respect to those system level design variables which are

_ot imposed as targets for discipline i is apparently zero.

aa7
i (5)

c)(x°v,),

I'he term (x_,), refers to the vector formed by the converged

.:.ptimal values of local variables and states in discipline i at the

..'nd of subspace optimization. The elements in (x_,), are the

:,ptimal counterparts of the system level targets (X,..Y,),.

rest Problem

A preliminary application of the decision-based collaborative

_)ptimization framework has been tested on an Aircraft Concept

qizing (ACS) problem. This problem was originally devcloped

by the MDO research group at the University of Notre Dame
_Wujek, Renaud, Batill, et. al., 1996). It involves the preliminary.

_dzing of a general aviation aircraft subject to certain

performance constraints. The design variables in this problem

are comprised of variables relating to the geometry of the

fircraft, propulsion and aerodynamic characteristics, and flight

egime. Appropriate bounds are placed on all design variables.



Theproblemalsoincludesanumberof parameterswhichare
fixedduringthedesignprocessto representconstraintson
missionrequirements,availabletechnologies,andaircraftclass
regulations.

The originalproblcmhasten designvariablesandfive
parameters.Thedesignof thesystemis decomposedintosix
contributinganalyses.This problem has been modified by

Tappeta (1996) to fit the framework of multiobjective coupled
MDO systems. It is further modified in this research to be

suitable for the case of decision-based design (DBD). For

comparison, the rest of this section gives a brief description of
the modified ACS problem by Tappeta. It will be referred to as

the ACS problem from hereon. The DBD version of the ACS

problem will be discussed in the following sections.

The Aircraft Concept Sizing (ACS) problem has three

disciplines (see Fig. 5): aerodynamics (CA1), weight (CA2) and

performance (CA3). It can be observed from the dependency

diagram that the system has two feed-forwards and there are no

feed-backs between disciplines. Table 1 lists the design

variables and their bounds in the ACS problem. Table 2 lists the

usage of design variables as inputs to each discipline. It can bc
seen that there are five shared design variables (x I - x 4 and XT).

Table 3 lists the parameters and their values. Table 4 lists the

state variables and thcir relations with each discipline. Clearly

there are two coupled states (Y2 and Y4). Table 5 contains all the

relevant information for the ACS problem in the standard MDO

standard notation introduced earlier.

Xl

x2

x3

x4

x5

x6

x7

Table 1: List of Design Variables in ACS Problem

Name (Unit)

aspect ratio of the wing

wing area (ft 2)

fuselage length (ft)

fuselage diameter (ft)

density of air at cruise altitude (slugs/ft 3)

cruise speed (ft/sec)

fuel weight (lbs)

L U

5 9

100 300

20 30

4 5

.0017 .002378

200 300

100 2000

Table 2: Input Design Variables of Each Discipline in ACS"

Xl

x2

x3

x4

x5

x6

x7

CA1 (Aero.) CA2 (Weight) CA3 (Perf.)

*Shaded cells in the table indicate shared variables.
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Table 3: List of Parameters in ACS Problem

Pl

P2

P3

P4

P5

P6

P7

P8

Name Description Value

Npass number of passengers 2

Non number of engines I

Wen engine weight 197 (Ibs)

Wpay payload weight 398 (lbs)

Nzult ultimate load factor 5.7

Eta propeller efficiency .85

c specific fuel consumption .4495 (Ibs/hr/hp)

Cim_, maximum lift coeff, of the wing 1.7

Table 4: Lists of States in ACS Problem*

Name (Unit) Output From Input To

total aircraft wetted area (ft 2) CAI

max lift to drag ratio CA1 CA3

empty weight (Ibs) CA2

gross take-off weight (lbs) CA2 CA3

aircraft range (miles) CA3

stall speed (ft/sec) CA3

Yl

Y2

Y3

Y4

Y5

Y6

*Shaded cells in the tablc indicate coupling states

The objective in the ACS problem is to determine the least

gross take-off wcight within thc bounded design space subjcct

to two performance constraints. The first constraint is that the

aircraft range must bc no lcss than a prcscribed rcquircment,

and the second constraint is that the stall specd must bc no

greater than a specificd maximum stall speed. In standard form,

the optimization problem is given below:

F = Weight = Y4

Y6

gl = 1 -->_0
Vstall, eq

Rangereq >_0
g2 = 1

Y5

I:,vtall,e q = 70 ft/scc

Ra/Igere q - 560 miles

Minimize:

Subject to:

(6)

Table 5: Design Vectors and Functions for ACS Problem

CAI

CA2

CA3

Vector or Function Variables or Content

x [x I , x 2, x 3, x 4, x5, x 6, XT]

Xsh [xl, x2, x 3, x4, XT]

xa_ _. goals for Y2, )'4

o o o o o o o o

Xsys [Xl' x2' x3' x4' x7, Y2, Y4]

F F=y 4

system targets to o o o o o o
be matched (Xsys)l = [x I, x2, x3, x4, )'2]

xl empty set

(xa,h [xl, x2, x3, .q]

(Xaux) I empty set

Xssl [xl, x2, x3, x4]

gl empty set

analysis [Yp Y21 = CA l[x I, x 2, x 3, x4]

optimal target (X_s) I = [x_, x_,x_, x_, y_]
values

system targets to o o o o o o o
be matched (Xsys) 2 = [xp x 2, x 3, x 4, x 7, Y4]

x2 Ix> x6]

(x,02 [xl, x2, x3, x4,-:7]

(Xaua) 2 empty set

xss2 [Xl, x2, x 3, x4, x 5, x6, x7]

g2 empty set

analysis [Y3' Y4] =
CA2lxp x 2, x 3, x 4, x 5, x 6, -';7]

optimal target
(x,:) 2 = Ix v x> x3, x4, x7,y4tvalues

system targets to o o o o
be matched (xsvs)3. = [x;, x 7, Y2, )'4]

x 3 empty set

(Xsh)3 [X2, X71

(xa_03 b'2, Y4]

-Vss3 Ix2, X7, )'2, ):4]

g3 [gl, g2]

analysis [YS, )'6] = CA3[x> x 7, Y2, )'4]

optimal target (-":.[,)3 : [x;, .,-;, y;, y;]
values

10



Demand Model and Cost Model

The approach of decision-based dcsign requires engineers to

not only focus on the product performance but also life-cycle
costs as well as demand and the profit obtained over the life-

cycle of the product. Thus it is vcry important to construct a

proper demand model and a proper cost model for the product.
The authors are aware that the task to build such models is not

an easy one, and engineers are generally not trained for this
task. Since this research is concentrated on the optimization

aspect of decision-based design, it is reasonable to assume that

other discipline experts have developed such demand and cost
models and made them available to the optimizer.

In the case of the Aircraft Conccpt Sizing (ACS) problem,

neither a demand model nor a cost model was available from the

previous studies. In order to apply the decision-based
collaborative optimization framework of Fig. 4, a demand
model and a cost model have been developed. These models are

built in a way such that they agree with industry trends for this

specific class of aircraft and that they lead to reasonable

optimization behavior. Although they are by no means

complete, they serve fairly well as concept models for the

application of DBCO at the current stage. Figure 6 illustrates
the demand and cost models of the ACS problcm. Only the

annual demand, annual cost and annual profit are considered in

the current research.

Demand Model

The first step in building the demand model is to identify the

_ttributes that influence the demand q of this aircraft. The

.:onventional opmnization ACS problem (Eq. (6)) tries to

ninimizc gross take-off weight (Y4) while satisfying two

i:,erformance constraints, one on stall speed 0'6) and the other on

,lircraft range 0'5). Closer examination reveals that the objective

:unction and two constraints, imposed in the original problem,

,ire based on the designer's estimate of customer preference for

weight, stall speed and range. In the decision-based design

_qlproach, it is more appropriate to treat these quantities (takc-
off weight Y4, aircraft range)3, and stall speed Y6) as attributes of

tcmand. Hence there are no perforrnance constraints in the

DBD version of the ACS problem, and the goal of thc

optimization is to maximize profit.

It is also assumed that customers are interested in the cruise

_pced (x6) of the aircraft as well as how much room they would

_ave on the airplane. A new state variable, fuselage volume (Y7),

s introduced to reflect the concern for passenger room on the

:iircraft. In all, there are five attributes of demand in the DBD

,'ersion of ACS problem: take-off weight Y4, aircraft range Ys,

_tall speed )'6, fuselage volume 3'7, and cruise speed x6. Note that

._lemand is also influcnced by price P.

Thc demand model developed is a multiplicative modcl:

2
----l.-f -F" -I-" =.n _,,..... _, _k.

' I I I =

i6 _r---I-- -- -- " I I I

o61 _l-_-_-L-i--I---I----k-.l I _1 i61 _17"1---I--'1"-I ---t"1 --

¢_n or _....d f., v._u I I I I o6 "

i. -1-- "1 -- "T -- o i i 3 4F,-qS,q, 1  a.go ........
'_-_-+-I \ Price

.,I----_----_---_-.Take-offWeight---------_/I ' Demand ))

..,,, / /
'F-r-r-r /

'_ -v- v- v" Cruise Sn__eed

, -,,--,,-- _ 'r-,-n-r-1
I I I I

in 1--1--_--1

I I I I

on ---4---./----1

I I I I

Cost

: , •
Fuselage L" _ll --_ ---q"

¢i °=..-:.:-.!.,

Fuselage @i ,o I--

Pi= _ _ ----lll--

_ CruiseSpeed ......

I_ = I I

| to ...... I* o

Figure 6. Concept Demand Model and Concept Model
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hal Cil
q = O(a, P) = q8 I-I Cp_,_,

i=

where a = {Y4, )'5, Y6, Y7, x6 }

IZa = 5

qB = 1200

(7)

The term qB represents a baseline demand, which is set to 1200.

The number of attributes is denoted by na. The affect of each

attribute on the final demand is reflected by the demand

coefficient ci. Similarly the term Cprice denotes the demand

coefficient of price P. The final demand q is the product of all

demand coefficients and the baseline demand q_.

Demand coefficients for each attribute and price are

developed by financial analysts and marketing personnel within

the business discipline and vary with time. For the purpose of

this study, they are assumed fixed with respect to time and are

given in Fig. 6. The curves in Fig. 6 plot the coefficient of
demand on the ordinate and the corresponding attribute (or

price) on the abscissa.

1. gross take-offweight(.v4)

The lower the take-offweight, the higher the demand; but

an aircraft with a very light weight is not desired.

2. aircraft range (Ys)

The longer the aircraft range, tile higher the demand; but

after the range reaches more than 600 miles, there is no sig-

nificant increase in demand when range increases.
This formulation is not unlike the original perlbmaance

constraint g2 (Eq. (6)), where the coefficient is set to 1

when aircraft range equals to 560 miles.

3. stall speed (v6)

The lower the stall speed, tile higher tile demand; but a

near-zero stall speed is not necessary.
This formulation is not unlike the original perlbrmance

constraint gl (Eq. (6)), where the coefficient is set to 1

when stall speed equals to 70 ft/sec.

4. fuselage volume 0'7)

The larger the fuselage volume, the higher the demand.

5. cruise speed (x6)

The faster the cruise speed, the higher the demand.

6. price(P)
The lower the price, the higher the demand; if the aircraft is
sold for free (P=0), the demand approaches infinity.

Cost Model

It is assumed that all costs (Cr) related to the production of

the aircraft can be divided into two categories: fixed cost C F and

variable cost C V (Krajewski and Ritzman, 1999). The fixed cost

(_'F iS the part of the total cost C T that remains consistent

regardless of changes in the amount of product produced, for

example, the annual cost of renting or buying equipment or

(acilities. The variable cost C v is the portion of the total cost C T

that varies directly with quantity of product produced, such as

cost per unit for material and labor. If we assume the quantity of
product produced and sold per year is equal to the demand q for

_he product per year, the total cost C T per year is:

C T = C F + qC V (8)

It is assumed that the variable cost C v in the ACS problem is

dependent on five of the seven design variables including wing

area (x2), fuselage length (x3), fuselage diameter (x4), cruise

:-;peed (x6) and fuel weight (x7). A variable cost parameter (Pv)i

vs assigned to each cost-related variable to represent the portion

of variable cost (per unit) associated with each variable. The

_,otal variable cost per unit is the sum of all variable cost

parameters:

nc_f

Cv = Z (pv), (9)
i=1

where ncost is the number of cost-related variables. The

::,uideline for assigning variable cost parameters is: the larger the

'_ariable, the higher the cost. The curves in Fig. 6, associated

with each cost-related variable, plot the variable cost paranaeter
,unit: 10,000 dollars) on the ordinate and the corresponding

,-ost-related variablc on tile abscissa. The step jumps in the

curves represents the need to purchase (or rent) and/or install

new equipment (or facilities) when the size of tile aircraft

exceeds existing production capabilities.

Substituting Eq. (9) into (8), the model of the total cost C T is:

nc,_t

Cr Cl:+q Y (PI), (10)
I - I

md the unit cost C u can be obtained by dividing both sides of

Eq. (10) by demand q:

CF n_o_,

C, = --+ 2 (Pv), (11)
q i-l

Note that the number of product produced (q) may have a

discounting effect on the variable cost parameters PI: For

nstance, usually tile cost per unit for material will decrease
,vhen the total amount of material bought increases. Thus a q-

discounting option has been included in the determination of

,'ariable cost parameter in the cost model.

12



.Note

The demand and cost models developed in this paper are by

no means complcte. They are conceptual and rather simplistic.

Future work on the modification of these models will include

(and not limit to) the following issues:

1. gross take-offweight (Y4)

It has been pointed out to the authors that to a customer

higher gross weight is actually desirable because it leads to

longer aircraft range. Meanwhile higher gross weight leads

to higher manufacture cost. Therefore a modified demand

model would include the gross take-off weight as a slightly

favorable feature (i.e., the higher the take-off weight, the

higher the demand). On the other hand a modified cost

model may include the gross take-off weight as a strongly

negative factor (i.e., the higher the take-off weight, thc

higher the cost).

2. aspect ratio of the wing (xl)

Increasing aspect ratio will increase the wing structural

weight, which will in turn lead to an increase in the aircraft

gross take-off weight, thus add to the total cost. A lnodificd

cost model would include aspect ratio as another negative

factor.

3. price(P)

It has been brought to the authors' attention that in the real

world, due to the maintenance requirements such as insur-

ance and hanger, the demand will not approach infinity if

the aircraft is given out for free. A modified demand model

will address this issue by assigning a definite number to the

demand coefficient for price when price is set to zero. This

definite number will be associated with the maximum

demand possible for this aircraft.

DBCO Formulation

The decision-based collaborative optimization framework has

been applied to the DBD version of the Aircraft Concept Sizing

(ACS) problem. This application is a preliminary study, and

focuses on the collaborative optimization feature of the DBCO

framework. The issues of propagated uncertainty are neglected

in this study. The utility of profit is assumed to be the profit

itself. Hence the objective of the resulting deterministic

optimization is to maximizc profit (or net revenue). During the

optimization, the demand q is treated as a continuous variable,

rather than an integer. At the end of the system optimization, q

is rounded to the nearest integcr.

Two additional disciplincs are added in the DBD version of

the ACS problem: cost (CAt) and business (CAb). Price P is a

new design variable and a new state variable (fuselage volumc

Y7) is introduced. Table 6 provides the list of input design

variables to each discipline in the DBD version of ACS

problem. Clearly design variable x 6 (cruise speed) enters the set

of shared variables. Table 7 lists the states y, demand q, total

cost C7_ and net revenue NR. It also depicts how they are related

:o each discipline. The sct of coupling variables expands to

nclude live additional members: 3'5 (aircraft range), 3'0 (stall

;peed), Y7 (fuselage volume), q (demand) and C T (total cost).

Fable 8 contains all the design vector information for the DBD

version of subspaces I (aerodynamics), 2 (weight), 3

performance) and c (cost) of the ACS problem in MDO

standard notation. Table 9 contains the design vector

information of subspace b (business) since it is operated directly

i_y the system level optimizer. The difference between the DBD

version of ACS problem and the modified ACS problem by

l'appeta (1996) can be clearly observed by comparing Tablcs 6,

7, 8 and 9 with Tables 2, 4 and 5, respcctively.

Table 6: Input Design Variables to Each Discipline in ACS

(DBD version)*

CA 1 CA2 CA3 CAc CAb

(Aero.) (Weight) (Perf.) (Cost) (Busm.)

xj "4 "4

x2 "4 "4 "4 4

.4 "4 "4

"4 4 .4

"4

.4 4 .4

.4 .4 4

x3

x4

x5

x6

x7

P

*Shaded cells indicate sharcd variables.

Table 7: Lists of States in ACS Problem (DBD version)"

Output From

)q CA1

Y2 C A 1

3'3 CA2

Y4 CA2

Y5 CA3

Y6 CA3

Y7 CAI

q CAb

C 1- CAc

AIR CAb

Input To

CA3

CA3, CAb

CAb

CAb

CAb

CAc

CAb

*Shaded calls indicate coupling states.
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CAI

CA2

CA3

Table 8: Design Vectors for ACS Problem

(DBD version)

Vector or Function Variables or Content

x [x I , x2, x3, x4, Xs, x6, XT, P]

Xsh [Xl, X 2, X 3, X4, X 6, X7]

Xau x goals for Y2, Y4, Y5, Y6, YT, C7; q

[Xl, o o o o oX 2 , X 3 , X 4 , X 6, X 7 ,
o

X,y),_,

o o o o o o qOY2, Y4, Y5, )'6, Y7, CT, ]

F F=-NR

system targets to o o o o o o o
bematched (Xsy s)l = [Xl'X2'x3'x4'Y2'YT]

x I cmpty set

(x_hh [xt, x2, Xs,x4]

(Xaux) 1 empty set

Xssl [Xl, x 2, x 3, x4]

gl empty set

analysis [Yi, Y2, Y7] = CA 1 [Xl, x 2, x 3, x4]

optimal target (x_)l = [x I, x_, x_, x_, Y2' YT]
values . •

system targets to o o o o o o o o
be matched (x.w_)2 = [xl' x2, x3, x4' x6, xT' -1'41

x2 [xs]

(Xsh)2 [Xl, X2, X3, X4, X6, X7]

(Xa..02 empty set

X.s.s2 [Xl, X2, x 3, x4, x 5, x 6, x7]

g2 empty set

analysis [)'3, Y4] =
CA 2 [ x 1, X2' x3, x4, x5, x6, x 7 ]

optimal target _ ..... • •values (x ,)2 = [xl, x2, x3, x4, x6, x7, 3'4]

system targets to o o o o o o o
be matched (Xsy_)3 = [x2, x7, 3'2, Y4, Ys, Y6]

x 3 empty set

(x_h)3 [x2,xT]

(Xam)3 [)'2, )'4]

X_s3 [X2, X7, Y2, .V4]

g3 empty set

analysis [Ys'Y61 = CA3[x2, xT, v2 3'41

optimal target (x_._.) 3 = [x;, )-';, y;, y_, y;, y_]
values

Table 8: Design Vectors for ACS Problem

(DBD version) (Continued)

system targets to o o o o o o o
be matched (Xsy s)c = Ix2' Xs' x4' x6' X7' q ' CT]

x c empty set

(Xsh) c [X2, X 3, X 4, X6, X7]

(x_.)_ [q]
CAc

x_sc [x2. x3, x4, x6, xT, q]

gc empty set

analysis C r = CAclx2, x3, x4, x6, XT, q]

optinla] target
(Xs_.)c = [x2, :c3, x 4, x 0, x 7, q , C r ]values

Table 9: Design Vectors in the subspace b (business)

for ACS Problem (DBD version)

targets sent down o o o o o o qO, CT ]
to other subspaces (Xsys)b = [x6, 3'4, Y5' 3'6, 3'7,

Xb [P]

(Xsh)b [X6]

CAb (Xaux)b D'4, ys, y6, )'7, CT]

o o o o

X-"-'b iX6' )'4' Y5' )'6' Y7' CT' PI

gb empty set

[qO, NRI =
analysis

CAb[x6 ' o o o o oY4" Y5' Y6' )'7' CT' P]

The system level optimization problem, for this application,
n its standard form is detailed in Eq. (12).

System [.evel Optimization

F = NRMinimize:
o

w.r.t, xsy._

SubJect to:

where

d_ - 0

d_ 0

d_ = 0

d_ - 0

o o o

(xw ` ),,,,,, <_X_y,. < (._'_.y_) .....

o o o o o o o

Xsy._ = [ X 1 , X 2, X 3, X 4, X 6, X 7.

o o o o o o

Y2, Y4, Ys. Y0, Y7, CT" P ]

qO _ o o o o o= q(.v4' Y5, Y6, ):7, x6, P)

NR p qO o= . -C T (12)
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Note that the system level optimizer calls the business discipline

directly to obtain demand qO and the system level objective NR.

There are thirteen system level design variables and four

cornpatibility constraints that are evaluated in subspace 1, 2, 3

and c.

The subspace optimization problems for each discipline in

their standard forms are given by Eqs. (13) - (16).

Subspace 1 (Aerodynamics)Optimization

02 02

,t I = (x_-xl) +(x2-x 2)

0 2 0 2

+(x 3-x3) +(x 4-x4)

0 2 0 2
+ (3'2 -Y2) + (Y7 - Yg)

(x,_._l),,,, <-x_,. I <- (x_,. I ),,,,,_

Xss I = [Xl, X 2,x 3,x 4]

[Yt V2, YT] = CAl[xl,x2'x3'x4]

Minimize:
w.r.t, xs. vI

Subject to:

where

Subspace 2 (Weight) Optimization

Minimize: o 2 o 2

w.r.t, x,.,. 2 d-, = (x t -x I ) + (x 2 - x 2 )

Subject to:

where

(13)

"_ 02

+ (x 3 - x3)" + (x 4 - .,q)

o 2 o 2

+(x6-x 6) +(XT-X 7)

0 2

+ ()"4 Y4)

(x_.,2)m, , -<x, 2 <- (x,., 2) .......

X_.s2 = [Xl, X 2,x 3'x 4,x 5,x 6'x 7]

[Y3' Y4] = CA2[Xl, x2, x3, x4, x5, x6, x7](14)

Subspace 3 (Performance) Optimization

Minimize: o 2 o 2
w.r.t.x._r3 d 3 = (x 2-x2) +(x 7-v7)

o 2

+(Y2-Y_)2'_ +(ya.-y4)

. o 2

(Y5 Y'_)-_ + (.v6 Y_,)

Subject to: (x,_3),,.n < x_,3 < (x,.,3) .......-

where -v,_3 = Ix2, A7' 1"2 Y4 ]

[3'5, 3'61 = CA3[x2, Xg, Y2, )'4]
(15)

";ubspace c (Cost) Optimization

Minimize:
w.r.t, xs._ c o 2 x])2d c = (x2-x2) +(x 3-

Subject to:

where

0 2
+(X4-X4) + (X6-X6)2

0 2

+ (x 7 - x7)

0 2
+(q-q°)2+(Cr-C r )

( x ,._c)mo _<_x ,_ <_(x _c)m, x

Xs_ c = [X2, X 3, X 4, X 6, X 7, q]

C T = CAc[x2, x 3, x 4, x 6, x 7, q]
(16)

Note that other than ,,'affable bounds, there are no local

,,:onstraints for the subspace optimization problems.

Optimization Results & Discussion

A Sequential Quadratic Programming (SQP) method was

_Jsed lbr optimization in both the system level and the subspace

_ptimization. The SQP solver, fmincon, was obtained from the

Matlab Optimization Toolbox. The program converged to an

,-ptimum after thirty-seven system level iterations. The optimal

,olution is listed in Table 10. Figure 7 shows the system level

,)ptimization history of convergence of the system level

objective function (negative of profit, in subplot 8), the

convergence history of the four compatibility (discrepancy)

constraints (d_, d;, d;, and d_, in subplots 9-12), and the

convergence history of the seven system level design variables

O

_cruise speed x_, aircraft range .v_, stall speed Y6, fuselage

O

,,olume Yg, price P, demand qO and total cost Cr, m subplots

i~7). The abscissa of each subplot is the number of system level

_r.erations. Note that the value of profit (not the negative of

_)rofit) was plotted m subplot 8 for easy reading. For the same

o

:cason unit cost C ° was plotted instead of total cost C T in
u

,ubplot 7.

As can be seen from the convergence plots, the system level

.,ptmaizcr tries to minimize both the negative of profit and the

constraint violations simultaneously. At the beginning of the

:,ptimization. the system level optimizer sets targets high lbr

price, high for the levels of performance (to ensure high

Jemand) and low for cost based on the results of the business

inalyses, ltowever these targets conltict with one anothcr and

lead to a large discrepancy at the subspace level. Thus the

•;ystem level optimizer, while trying to keep profit as high as

possible, was forced to lower price, downgrade performance

:rod tolerate higher cost so that the subspace discrepancy could

i_e reduced. Gradually the system level optimizer found the best

_rade-off among the targets and reached a consistent optimal

design. The optimization history observed in the ACS problem
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resemblesthe existingrelationshipbetweenbusinessand
engineeringinmultidisciplinarysystemsdesign.

Thedemandmodelandthecostmodelplayanimportantrole
in thedecision-baseddesignapproach.Inordertoillustratethe
influenceofthedemandandcostmodels,aconventionalall-at-
onceoptimizationwaspcrlbrnledaccordingto theproblem
formulationinEq.(6).Theconventionaloptimumobtainedis
alsolistedinTable10.Notethatfuselagevolume0'7)atthe
conventionaloptimumis dcterminedbytheoptimalfuselage
length(x3)andoptimalfuselagediameter(x4).It canbe
observedthattheconventionaloptimumoutpeffonnstheDBCO
optimal design on lower weight (v 3, 3'4). However it possess

poor characteristics in many aspects such as smaller aircraft

range 0,5), higher stall speed (Y6) and smaller fuselage volume

0'7). Such an outcome is no surprise since the main concern of

the conventional ACS problem is to minimize take-off weight,

while the DBD approach takes into account other performance

attributes, because of the DBD objective of maximizing profit.

If we assume that the aircraft configuration at the

conventional optimum dcsign will be sold at the same price as

the DBD optimum design, the demand, cost and profit of the

conventional product can be obtained according to the demand

model (Eq. (7)) and cost model (Eqs. (10) and (1 I)) developed

earlier. These values are listed in Table I0 in parentheses

because of the assumption. Notice that the unit cost of

conventional optimal design is lower than lhc unit cost of the

DBD optimal design. However the poor performance attributes

cause the demand for conventional optimal design to be much

lower than the DBD optimal design. Hence the DBD optimal

design leads to higher profit.

Xl

x2

x3

x4

x5

x6

x7

Yl

Y2

Y3

Y4

Y5

Y6

Y7

P

q

Cr

c.

NR

Table 10: Optimal Solutions for ACS Problem

DV

Name (Unit) Bounds

aspect ratio of the wing 5~9

wing area fit ? ) 100~300

fuselage length (ft) 20-30

fuselage diameter (ft) 4~5

density of air at cruise .0017 ~

altitude (slugs/ft 3) .002378

cruise speed (ft/sec) 200~300

fuel weight (Ibs) 100~2000

total aircraft wetted area (ft 2)

max lift to drag ratio

empty weight (Ibs)

gross take-off weight (Ibs)

aircraft range (miles)

stall speed (ft/sec)

fuselage volume (ft 3)

prtce ($)

demand

total cost ($)

unit cost ($)

net revenue or profit ($)

DBCO Conven.

Optimum Optimum

7.968 5

230.3 176.53

21.927 20

4.1871 4

.0023 .0017

219.65 200

231.22 142.86

887.21 710.3

14.273 10.971

1556.6 1207.6

2185.9 1748.4

953.67 560

68.525 70

301.92 251.33

3.56e5 (3.56e5)
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10.9e6 (6.39e6)

x60 (ft/sec)

[cruise speed]

3o0

280 @

260

240

ii
2OO

0 19 37

(c °) [s)

]unit cost]

t
3e5 n

IT

; ®
le5

o .......

0 19 37

y50 (miles)

lrange]

5000

4000 @

3000 I_

2000

IOOO

{56o)

0 19 37

y6 ° (ft/see)

]stall speed]

! 5O

®
IOO

(701

50

0 19 37

y7 ° (ft 3)

I fuselage vol.l

6oc

5oc @

4OC-

zoo

2OC

• O()

0 19 37

,rice ($)

4e5

3e5

2e5 @

O ..... -- -,

0 19 37

qO

Idemand|

6oo

400

200 @

L/'---
O .... ,_ .

O 19 37

,rofit (S)

2e8

1.5e8

Ie8 @

0.5e8

0 lO 37

d

0.25

0.2 @

0,15

0.1 I

o.o5 t

o -_

O 19 37

d2*

0. O, ; (_

O.O,_.

l

0 19 37

d3*

0.10

0,08

O. 06

0.04

0.02

0

@

dc*

0.08

O. 06 @

0.04

0.02

O 19 37

abscissa: # of system level iterations

Figure 7. System Level Convergence Plots for ACS Problem (DBD version)
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CONCLUSIONS

In this research a Decision-Based Collaborative Optimization

(DBCO) framework which incorporates the concepts of

normative decision-based design (DBD) and the strategies of

Collaborative Optimization (CO) has been developed. This bi-

level non-deterministic optimization framework more

accurately captures the existing relationship between business

and engineering in multidisciplinary systems design. The

business decisions are made at the system level, which result in

a set of engineering performance targets that disciplinary

engineering design teams seek to satisfy as part of subspace

optimizations. The objective of the Decision-Based

Collaborative Ot)timization (DBCO) is to maxinfize the

expected yon Neuman-Morgenstem (vN-M) utility of the profit
or net revenue (NR) of a product.

A preliminary application of this approach (deterministic

case) has been conducted on a multidisciplinary test problem
named the Aircraft Concept Sizing (ACS) test problem.

Conceptual demand and cost models have been developed. The

corresponding optimization results are discussed and compared

with the conventional optimization solutions.

Future work is being targeted towards a non-deterministic

implementation ot" the DBCO fiamework in which the issues of

propagated uncertainty in such a bi-level optimization

framework will be addressed (Gu and Renaud, 2001). A

conceptual utility model for the net revenue (NR) will be

adapted from the literature in the field of decision-based design

(DBD). The conceptual demand and cost models developed in
this paper will be modified to better reflect the real world.
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